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Azoospermia due to obstructive and non-obstructive mechanisms is a common manifestation of male infertility
accounting for 10-15% of such cases. Known genetic factors are responsible for approximately 1/3 of cases of
azoospermia. Nonetheless, at least 40% of cases are currently categorized as idiopathic and may be linked to
unknown genetic abnormalities. It is recommended that various genetic screening tests are performed in
azoospermic men, given that their results may play vital role in not only identifying the etiology but also in
preventing the iatrogenic transmission of genetic defects to offspring via advanced assisted conception
techniques. In the present review, we examine the current genetic information associated with azoospermia
based on results from search engines, such as PUBMED, OVID, SCIENCE DIRECT and SCOPUS. We also present a
critical appraisal of use of genetic testing in this subset of infertile patients.
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& INTRODUCTION

Infertility refers to failure of a couple to conceive
following 12 months of unprotected regular intercourse,
and this problem affects 10-15% of couples in the United
States (1). Male factor infertility is partially or fully
responsible for approximately 30-55% of cases of infertility
(2,3). It was recently reported that 1 in 13 men of
reproductive age requests medical assistance to have a
child (4). Azoospermia, which is the complete absence of
sperm in the ejaculate, accounts for 10-15% of male
infertility cases and generally affects 1% of the male
population (3,5,6). Azoospermia is divided into two major
categories: obstructive azoospermia (OA), in which there is
genital tract outflow obstruction, blocking passage of the
sperm, and non-obstructive azoospermia (NOA), in which
the testicle fails to produce mature sperm in the ejaculate.
Although some reports indicate a higher incidence of NOA
than OA (60 vs. 40%) (6) and (85.2 vs. 12.9%) (7), others have
reported the opposite. (8). Genetic factors explain 21-29% of
azoospermia (9), whereas 12-41% of azoospermic cases are
idiopathic and most likely related to unknown genetic
factors (7). Using a series of advanced diagnostic and

assisted reproduction therapeutic tools, clinical pregnancy
and live birth rates were reported to range from 26-57% and
18-55% for NOA and OA, respectively (10-16).
Azoospermia of a genetic origin is primarily caused by a

wide array of genetic disorders, such as chromosomal
abnormalities, monogenic disorders, multifactorial genetic
diseases, and epigenetic disorders. These conditions con-
stitute the genetic basis of reproductive failure. Table 1
summarizes the genetic basis of azoospermia at the post-
testicular (obstructive azoospermia), pre-testicular and
testicular (non-obstructive azoospermia) levels. The aim of
this article is to review the genetic causes of azoospermia
and to critically appraise the available types of genetic
testing and the utility of such tests for the diagnosis and
management of azoospermic males.

& OBSTRUCTIVE AZOOSPERMIA OF GENETIC
ORIGIN

Obstructive azoospermia comprises the genetic and
acquired diseases that cause the obstruction of the
reproductive tract pathway. The genetic causes of OA
account for approximately 30% of cases (17). In a study that
evaluated 179 men with OA, congenital bilateral absence of
the vas deferens (CBAVD) was the most frequent condition
linked to genetic abnormalities (17). Four genetic post-
testicular diseases have been characterized and are
described below. Young syndrome is another condition
that is associated with OA and that may have a genetic
background. Nevertheless, no definitive causative muta-
tions have been discovered.
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Cystic fibrosis
Cystic fibrosis (CF) is a life-threatening autosomal

recessive disease that affects 1/2,500 Caucasian newborns
and has a carrier frequency of 4% (18). CF is characterized
by the presence of thick and viscid secretions in the lungs,
pancreas, intestines, and liver. Such abnormal secretions
result in the formation of plugs that obstruct the ductal
lumens in these organs, causing dilatations, frequent
infections, and fibrosis. The cause of the viscid secretions
is a failure of epithelial cells to transport chloride, sodium
ions and water to the lumen of the epithelial tubes. This
failure is due to a mutation in the cystic fibrosis transmem-
brane conductance regulator (CFTR) gene, which encodes a
chloride channel protein.

The CFTR gene is located on chromosome 7 q31.2 (19) and
has been implicated in the formation of excurrent seminal
ducts (20). The CFTR gene is 190 kb in length and consists of
27 exons. Over 1,800 mutations in this gene have been
reported (20). The CFTR protein is a glycosylated trans-
membrane ATPase protein that functions as a plasma
membrane channel for sugars, peptides, inorganic phos-
phate, chloride, and metal cations. CFTR is expressed in the
epithelial cells of exocrine tissues, such as the lungs, the
pancreas, sweat glands, the head of the epididymis and

the vas deferens. This protein is composed of 1,480 amino
acids and has a molecular weight of 168,173 Da. Several
reports noted the role of CFTR in sperm maturation in the
epididymis, as this protein is necessary for fluid absorption
and the facilitation of sperm capacitation and fertilization
ability (21-23).
The level of functionally active CFTR protein determines

the clinical phenotypes of CFTR mutations. Normal indivi-
duals should have an active CFTR protein level of 50-100%,
whereas individuals with CF exhibit CFTR activity that is
lower than 10% of normal levels (24). Only 2-3% of men
with classic CF are fertile, and the majority are infertile
(98%) due to congenital bilateral absence or atresia of the
vas deferens, which results in azoospermia (25). Epididymal
malformations are also common manifestation of CF and are
characterized by the absence of the body and tail and blind-
ended efferent ductules. Seminal vesicles in these men
exhibit a spectrum of anomalies, ranging from atresia,
hypoplasia and cystic dilatation. Obstructed ejaculatory
ducts are also common. Patients with CF may exhibit
varying combinations of these abnormalities.
In most patients with CF, testicular histology indicates

normal spermatogenesis. A subset of patients, however,
exhibit impaired spermatogenesis, and such impairment
may be attributed to the role of the CFTR protein in
gametogenesis (26,27). Abnormal sperm morphology has
also been described. It is attributed to defective spermiogen-
esis due to a lack of CFTR protein, which is also expressed
in spermatozoa (28). The vast majority of patients with CF
carry two major mutations in chromosome 7 (88%), whereas
11% exhibit compound heterozygous mutations, consisting
of a severe mutation in one chromosome and a mild
mutation in the other (18,29). The types of severe mutations
that are frequently encountered in patients with CF
encompass F508del (30%), G542X (3.4%) and G551D (2.4%)
(30). The prevalence of these specific mutations vary with
the ethnic background of the patient. For example, nF508 is
the most common mutation in 70-90% of men with CF in
North America and Northern Europe, compared with 50%
in Southern Europe and less than 30% in Asians and Indians
(31). CFTR mutations are also implicated in isolated seminal
duct abnormalities. These abnormalities are referred to as
primary genital or atypical forms of CF.

Congenital bilateral absence of the vas deferens
The congenital bilateral absence of the vas deferens

(CBAVD) invariably results in azoospermia. CFTR is
mutated in 60-90% of patients with CBAVD (32). CBAVD
accounts for at least 6-25% of cases of obstructive azoos-
permia and approximately 2% of infertility cases (33,34).
Men with CBAVD generally exhibit either a single or two
mild mutations in the CFTR gene (12%) or a combination of
a severe and a mild mutation (88%) (18,35,36). Five patterns
of CFTR mutations have been described: i) class I, which is
characterized by a defect in protein synthesis, with a
premature termination that results in a nonsense or
truncated protein; ii) class II, which is caused by a defect
in protein processing and localization of CFTR protein to the
apical plasma membrane, e.g., DF508; iii) class III, which is
characterized by a defect in cAMP regulation of the channel
opening, e.g., G551D (replacement of glycine with aspartic
acid at position 551); iv) class IV, which is caused by a
partial decline in chloride conductance; and v) class V,
which is characterized by reduced levels of functional CFTR

Table 1 - Genetic diseases and abnormalities that result
in azoospermia at the post-testicular (obstructive
azoospermia), pre-testicular and testicular (non-
obstructive azoospermia) levels.

Obstructive Azoospermia of Genetic Origin

Cystic Fibrosis

Congenital Bilateral Absence of the Vas Deferens

Congenital Unilateral Absence of the Vas Deferens (CUAVD)

Congenital Bilateral Epididymal Obstruction and Normal Vasa

Young Syndrome

Nonobstructive Azoospermia of Genetic Origin

Genetic Pre-testicular Causes of NOA

Hypothalamic HH

Congenital HH

Adult-onset genetic hypothalamic HH

Pituitary Disorders Associated with Hypogonadism

Generalized anterior pituitary hormone deficiency

Selective gonadotropin deficiency

Genetic Testicular Disorders

Affecting Spermatogenesis and Androgen Production

Klinefelter syndrome

XX male syndrome

Mutation in X-linked USP 26

X-linked SOX3 mutation

Bilateral anorchia

Noonan syndrome

45 X/46XY mosaicism (mixed gonadal dysgenesis)

Affecting Spermatogenesis

Y chromosome microdeletion

Autosome translocations

Monogenic disorders

Multifactorial disorders (e.g., cryptorchidism)

Affecting Androgen Production or Action

Androgen receptor mutation

Steroidogenic acute regulatory protein StAR mutation

3BHSD type 2 deficiency

SRD5A2 mutation

Dysfunctional Cell Regulatory Pathways

Epigenetic Defects

Genetic Abnormities at the Primordial Germ Cell Level
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protein. Classes I, II and III have been associated with a
complete lack of functional CFTR and severe CF manifesta-
tions, including pancreatic insufficiency. Class IV and V
mutations cause a mild CF phenotype due to residual CFTR
protein activity. Men with compound heterozygosity (i.e., a
mild and a severe mutation, such as DF508) may have either
CBAVD or a mild form of CF.
The common CFTR mutations found in men with

CBAVD are the following: i) DF508, in which the three
nucleotides that encode the phenylalanine at position 508
are missing in the protein’s amino acid sequence. DF508 is
a class II mutation observed in 21-40% of men with
CBAVD; ii) polymorphisms within intron 8 (5T, 7T). Such
polymorphisms reduce the production of the CFTR protein,
resulting in a reduction in the splicing efficiency of the
CFTR gene (accounts for 19-37% of CBAVD cases); iii) a
missense R117H mutation in exon 4 (14% of CBAVD cases);
and iv) a combination of DF508/R117H, which represents
the most common mutation in patients with CBAVD (40%)
(36,37).
A recent meta-analysis by Yu et al. revealed that 78% of

men with CBAVD carry a minimum of one CFTR mutation.
In the aforementioned study, 46% and 28% of men carried
two mutations and a single mutation, respectively (38).
Moreover, compound heterozygous DF508/5T and DF508/
R117H mutations were present in 17% and 4% of CBAVD
cases, respectively. The three most common mutations are
5T (25%), DF508 (17%), and R117H (3%) (38). Non-
Caucasian men exhibit a higher incidence of single rather
than double mutations (68 vs. 50%, p= 0.012), a higher
frequency of 5T mutations (31 versus 20%, p= 0.009) and a
lower frequency of ÄF508 mutations (8 versus 22%,
p=0.001) compared with Caucasian men (38).
Intracytoplasmic sperm injection (ICSI) is a useful method

for the treatment of azoospermic men with the CFTR
mutation. Partners who both carry the mutation should be
advised to have a preimplantation genetic diagnosis (PGD)
performed to avoid passing the abnormality to their
offspring (39).

Congenital unilateral absence of the vas deferens
(CUAVD)
This condition affects 0.5-1.0% of the male population and

represents a heterogeneous disorder with respect to its
etiology and clinical presentations. Whereas most men with
CUAVD are fertile, a subgroup exhibits azoospermia or
oligozoospermia. In the embryonic period, the vas deferens
arises from the mesonephric duct. At the 7th week of
development, this duct gives rise to the ureteric bud, which
in turn induces the development of the kidney from the
metanephros. An embryological insult to a single meso-
nephric duct at or prior to the seventh week of development
can result in unilateral vasal aplasia and ipsilateral renal
agenesis. It has been estimated that 79% of individuals with
CUAVD have an absent ipsilateral kidney (40).
CFTR mutations have been observed in men with

CUAVD who exhibit no renal agenesis. Kolettis et al.
reported either single CFTR mutations, such as Negative/
621_G-T, or compound heterozygous mutations, such as
DF508/5T and DF508/7T/9T, in three out of four men with
CUAVD and a distally obstructed contralateral vas defe-
rens. The fourth patient, who was negative for a CFTR
mutation, exhibited contralateral renal agenesis (41). In the
aforementioned series, none of six men with CUAVD and

patent contralateral vas exhibited mutations in the CFTR
gene, although three of these patients had ipsilateral renal
agenesis (41). Other authors have reported that CFTR
mutations may be observed even in men with CUAVD
who have normal patent contralateral vas. Radpour et al.
demonstrated that in the absence of renal agenesis, five of
seven (70%) Iranian men with CUAVD and a patent
contralateral vas had either single or compound hetero-
zygous CFTR mutations (42). Studies from Canada (43),
Spain (44), Germany (45), France (37), and Portugal (43)
also reported variable rates of CFTR mutations among
men with CUAVD (20%, 27%, 60-100%, and 75%,
respectively). However, a critical point with respect to
these data sets, besides the small sample sizes, is the lack
of information regarding the patency of the contralateral
vas deferens.

Congenital bilateral epididymal obstruction and
normal vasa
CFTR mutations have been implicated in bilateral

epididymal obstruction in azoospermic men in the presence
of normal, bilaterally palpable vasa. Mak et al. identified
CFTR mutations in 14/56 (25%) men with idiopathic
epididymis obstruction (46). The most common identified
mutations were IVS8-5T, DF508, R117H and L206W.
Similarly, Jarvi et al. reported that as many as 47% of
patients with bilateral epididymal obstruction carried CFTR
mutations, such as IVS8-5T, DF508, and R117H (47).

Young syndrome
Young syndrome is a rare disease primarily characterized

by a constellation of three components, that is, bilateral
epididymal obstruction with azoospermia, bronchiectasis,
and chronic sinusitis. The estimated prevalence is unknown,
with newly discovered cases being described as case
reports. Unfortunately, the origin of this disease is also
unknown, although childhood exposure to mercury and
genetic etiologies have been suggested (48,49). Its familial
incidence in one case and its association with medullary
sponge kidney in another suggest its inheritability (50,51);
however, mutations have not been identified. Male inferti-
lity is attributed to bilateral epididymal head dilatation and
blockage by an expressible amorphous mass that is
attributed to poor epididymal mucociliary clearance (49).
The diagnosis of Young syndrome is made by the exclusion
of the two other similar syndromes, namely, CF (screened
for by testing for CFTR mutations) and immotile cilia
syndrome, which is confirmed by prolonged nasal muco-
ciliary clearance of the tested material (saccharine) (49,52).
Functional rather than subtle ultrastructural epididymal
and nasal ciliary defects are considered to be the basic
mechanism of the disease, and epididymal aspirations
revealed motile spermatozoa (52). Interestingly, epididymal
obstruction often occurs in middle-aged men; therefore,
previously successful parenthood may be anticipated in
such syndromes (52,53).

& NON-OBSTRUCTIVE AZOOSPERMIA OF GENETIC
ORIGIN

Non-obstructive azoospermia (NOA) is a heterogeneous
disorder that is characterized by various testicular tissue
alterations. Such changes result in poor and/or absent
spermatogenesis within the testes and the absence of sperm
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in the ejaculate. NOA accounts for approximately 60% of
men with azoospermia and represents the most severe form
of male factor infertility. Although NOA is caused by a
multitude of factors, such as heat, radiation, drugs,
varicocele, infections and cancer, genetic etiologies con-
tribute significantly to the development of this disorder in
21-28% of cases (7,9,40,57-59). NOA is didactically divided
into two major categories, i.e., pre-testicular and testicular.
The genetic pre-testicular etiology encompasses hereditary
hypothalamic-pituitary abnormalities, which lead to insuffi-
cient gonadotropin action on testicular cells. This defect
results in small testes that exhibit an immature histological
pattern. In these cases, immature Sertoli cells or spermato-
gonia type A (which primarily reside in the center of
seminiferous tubules) and the absence of Leydig cells are
often observed.

Genetic testicular causes of NOA include the following: i)
chromosomal abnormalities, ii) Y chromosome microdele-
tions, iii) failure of the primordial germ cells to reach the
developing gonads, iv) lack of differentiation of the
primordial germ cells to spermatogonia, and v) male germ
line mutations that affect spermatogenesis. The lattermost
cause is further divided into mutations that control
transcription, signal transduction, apoptosis, cell response
to stress factors, cytokines (cross-talk), immune sensitization
of germ cells, meiotic divisions, and epigenetic factors.
Genetic mutations of androgen receptors are also included
in this category.

& GENETIC PRE-TESTICULAR CAUSES OF NOA

Pre-testicular causes of NOA result from either hypotha-
lamic or pituitary disorders.

Hypothalamic hypogonadotropic hypogonadism
Genetic hypothalamic disorders essentially fall under the

classification of hypothalamic hypogonadotropic hypogo-
nadism (HH), which encompasses a broad spectrum of
diseases characterized by various genotypes. A deficiency of
gonadotropin-releasing hormone (GnRH) or its receptor is
the fundamental endocrine abnormality that is detected in
this disease. GnRH is a decapeptide that is synthesized by a
loose network of neurons located in the medial basal
hypothalamus (MBH) and in the arcuate nucleus of the
hypothalamus. A subset of GnRH neurons is observed
outside of the hypothalamus in the olfactory organ,
reflecting the common embryological origin of these
neurons (54). Developmentally, GnRH neurons originate
from the olfactory placode/vomeronasal organ of the
olfactory system and migrate along the vomeronasal nerves
to the hypothalamus. Here, these cells extend processes to
the median eminence and the pituitary gland (55). GnRH is
synthesized as a precursor, 92-amino acid hormone and is
then cleaved into a 69-amino acid prohormone. This
prohormone is further cleaved at the nerve terminals to
form the active decapeptide (55). GnRH receptors are
plasma membrane-associated receptors that promote
increases in intracellular calcium concentrations, which acts
as a second messenger, upon binding to GnRH (55).

The essential function of GnRH is to stimulate the
secretion of LH and FSH from the anterior pituitary gland
at the time of puberty (56). The hypothalamic pulse
generator triggers the pulsatile release of GnRH and is
considered to be a regulatory mechanism of the action of

this hormone. Moreover, there is a brief postnatal surge of
GnRH during the infantile period, which lasts for a few
months and allows for the proper diagnosis of a suspected
deficiency at an early age (57).
Genetic HH is primarily divided into two general

categories based on the age of onset: congenital and adult-
onset HH. Congenital HH is subdivided by the presence of
an intact olfactory sense: anosmic HH (Kallmann syndrome)
and congenital normosmic isolated HH (IHH). Prader-Willi
syndrome is also a congenital disorder that presents with
HH.

Congenital HH
This disease is primarily characterized by early-onset

hypogonadism due to the dysfunctional release or action of
GnRH. This defect results in delayed or absent pubertal
development, with low sex steroid levels in the setting of
low or normal gonadotropin levels. Normal hypothalamic
pituitary gland anatomy on magnetic resonance imaging
and the absence of other causes of HH, such as hemochro-
matosis, are prerequisites for diagnosis (58). The congenital
incidence of HH is 1-10/100,000 live births, with approxi-
mately 2/3 being due to Kallmann syndrome and 1/3 to
normosmic HH (59).
Kallmann syndrome (KS) is characterized by the presence

of complete or partial anosmia in association with con-
genital HH. The failure of the migration of GnRH neurons
from the olfactory placode to their destination in the
hypothalamus and the olfactory lobe is the basic embry-
ological defect that characterizes this syndrome (59).
However, the genetic bases of this condition have not been
fully elucidated. Sporadic (2/3) and familial (1/3) varieties
of this condition have been described (60). Hereditary
studies reveal that familial KS is heterogenetic, with variable
modes of inheritance (autosomal dominant, autosomal
recessive, and X-linked) being observed. X-linked inheri-
tance is the most common mode. It is not only the genotypic
characteristics but also the phenotypic features of this
syndrome that are variable. A diverse spectrum of physical
manifestations is observed. Males are affected five times
more frequently than females, and its incidence in males is
approximately 1/8,000 (61). Unfortunately, the genetic
origin of only 50% of familial cases and 10% of sporadic
cases has been clarified (62). Six known genes account for
only 25-35% of all cases of KS (60). These genes are as
follows: KAL-1, FGFR-1, PROK-2, PROKR-2, CHD-7, and
FGF-8. However, other genetic abnormalities have been
described, such as chromosomal translocation 46 XY,
t(10,12) (63) and copy number variations (CNVs) (64).
Regions in which CNVs are observed account for less than
12% of the human genome and are defined as large
segments of DNA on a particular chromosome that have
been deleted or duplicated (65,66). Five distinctive chromo-
somal regions have been implicated in Kallmann syndrome,
and the majority of these CNVs involve the intronic regions
of a particular gene, reflecting a possible disturbance in
splicing mechanisms. These regions include the following:
1p21.1, 2q32.2, 8q21.13, 14q21.2, and Xp22.31 (64).
KAL-1 was the first gene that was discovered in Kallmann

syndrome patients. This gene maps to the X chromosome
(Xp22.32) and consists of 14 exons (59,67). It encodes an
840-amino acid protein that is referred to as anosmin 1. This
is an extracellular adhesion protein that has a potential role
in orchestrating GnRH neuron adhesion and axonal
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migration (59,67). The majority of the observed mutations in
the KAL-1 gene are either nucleotide insertions or deletions
that result in a frame shift mutation or a premature stop
codon (59). However, in fewer than 20% of cases, these
nucleotide insertions or deletions may cause amino acid
substitution, disrupting the tertiary structure of anosmin 1
and attenuating its function (68). Rarely, contiguous gene
syndrome, which includes the deletion of terminal regions
of the short arm of the X chromosome (Xp22), may
contribute to KS (69,70). Such deletions may cause, in
addition to KS, short stature, chondrodysplasia punctata,
mental retardation, and steroid sulfatase deficiency (69,70).
The KAL-1 gene is responsible for the X-linked recessive
mode of inheritance in familial KS and accounts for 10-20%
of all cases of KS (71-73). Specifically, KAL-1 mutations
account for 30-60% of familial cases and 10-15% of sporadic
cases of KS (73-75). Nevertheless, this gene has not been
observed in female KS patients or in isolated normosmic
HH cases (76). Interestingly, several phenotypic character-
istics have been associated with KAL-1 mutations, such as
mid-facial clefting, unilateral renal agenesis in 30% of cases,
specific neurological abnormalities such as synkinesis
(mirror movement), cerebellar dysfunction, deafness, eye
abnormalities and mental retardation (60).
The fibroblast growth factor receptor 1 (FGFR-1 or KAL-2,

8p11.2-p11.1) gene is the second most common genetic
mutation that is associated with KS (77,78). This gene
encodes a tyrosine kinase-linked membrane glycoprotein
receptor that binds to extracellular acidic and basic
fibroblast growth factors (79). A potential function of
fibroblast growth factor is to facilitate GnRH neuron
migration, differentiation and survival (80,81). The dysfunc-
tion of the FGF receptor results in improper migration and
localization of GnRH neurons, potentially explaining the
contribution of this mutation to normosmic HH. FGFR-1
mutations are observed in 10% of patients with KS (78,82).
Mutations in this gene are observed in 11% of sporadic cases
and 8% of familial cases (83). More importantly, the
observed mode of inheritance in familial KS is autosomal
dominant, with variable expressivity, incomplete pene-
trance and an even male-to-female ratio (84). Variable
expression of the FGFR-1 gene is reflected by the occurrence
of anosmia alone, hypogonadism alone, or both in family
members of the proband (i.e., the affected individual).
Moreover, mutations in the FGFR-1 gene do not always
result in KS (incomplete penetrance); this phenomenon may
highlight the requirement of a loss of function mutation in
the development of KS. More than 70% of mutations in
FGFR-1 are missense point mutations that result in amino
acid substitutions in the immunoglobulin-like or tyrosine
kinase domains. Other mutations are either nonsense, frame
shift or splice mutations (61). FGFR-1 mutation-induced KS
is characterized by variably severe hypogonadism (from
mild to complete) and certain morphogenic abnormalities,
such as mid-facial clefting, synkinesis (20% of patients) and
missing teeth (61).
Fibroblast growth factor 8 (FGF-8) is considered to be one

of the ligands for FGFR-1 and is hypothesized to facilitate
the migration and differentiation of GnRH neurons to the
hypothalamus, as was described above. Mutations in the
gene that encodes this protein can cause KS and normosmic
HH (85,86). This gene has been mapped to chromosome
10q24 and is responsible for fewer than 2% of all cases of KS
(60). An autosomal dominant mode of inheritance is also

demonstrated in familial cases with variable penetrance.
Other genes that may be affected in KS include PROK2,
PROKR2, and CHD7. Prokineticin 2 is an 81-amino acid
protein that is encoded by the PROK2 gene, which has been
mapped to chromosome 3p13. This protein has a putative
role in the chemoattraction of GnRH neurons in their
migration to and differentiation in the hypothalamus (59).
This protein acts by binding to a specific G-protein-linked
receptor that is encoded by PROKR2 and is located at
20p12.3 (59,61,62). Frame-shift mutations in PROK2 and
missense mutations in PROKR2 account for 5-10% of cases
of KS (59,61). Mutations in either of these genes exhibit
homozygous (autosomal recessive), heterozygous (autoso-
mal dominant) and compound heterozygous modes of
inheritance (87). Furthermore, these mutations are asso-
ciated with variable phenotypic manifestations, such as
fibrous dysplasia, severe obesity, sleep problems and
synkinesis. Similarly, mutations in these genes have been
described in normosmic HH (88). Chromodomain helicase
DNA binding protein 7 (CHD7) is a member of a family of
proteins whose function is to organize chromatin remodel-
ing (packaging), a process that regulates gene expression
(89,90). Tightly arranged chromatin is characterized by
lower gene expression compared with loosely arranged
chromatin. CHD7 is ubiquitously expressed in fetal tissues,
the brain, the eyes, the inner ear, olfactory neural tissue and
GnRH neurons. The gene that encodes this protein is located
on chromosome 8q12.2 (62). Mutations in this gene have
been linked to several diseases, such as KS, normosmic HH
and CHARGE syndrome. CHARGE syndrome is associated
with eye coloboma, heart defects, atresia of the nasal
choana, retarded growth, genitourinary abnormalities,
anosmia, and hypogonadism (KS) (89-91). The CHD7
protein is postulated to be an essential factor in the
migration and differentiation of GnRH neurons. Seven
mutations have been described for this gene in sporadic
and familial KS and normosmic HH (59,92). CHD7 accounts
for 6% of all cases of KS and 6% of sporadic KS cases.
Moreover, familial KS due to CHD7 mutations exhibits an
autosomal dominant mode of inheritance (92).
Normosmic HH, which is also referred to as isolated or

idiopathic HH, is defined as a lack of GnRH secretion or
function in the setting of i) normal or low pituitary
gonadotropins and ii) the absence of anatomical or func-
tional hypothalamic abnormalities. Patients with normos-
mic HH present with low levels of sex steroids, normal
MRIs and a normal olfactory sense. This disease contributes
to 40% of cases of hypothalamic HH. Two-thirds of cases of
normosmic HH are considered to be sporadic, whereas 1/3
of cases are familial (60). This disease frequently overlaps
with KS in terms of both clinical presentation and the
involved genes. Familial cases exhibit X-linked, autosomal
dominant and recessive modes of inheritance. The patho-
genetic mechanism is attributed to a failure of differentia-
tion or development of normally migrating GnRH neurons
into the hypothalamus, resulting in a lack of GnRH
secretion or apulsatile secretion (59). A wide array of
causative mutations have been identified by nucleotide
sequence studies. Nevertheless, the genetic etiology of this
condition is unknown for more than 50% of patients. Genes
that have been previously reported to be mutated in KS,
including FGFR-1, FGF8, PROK2, PROKR2, and CHD7,
have also been implicated in the pathogenesis of normosmic
HH. The other implicated mutations include those in GnRH,
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GnRHR, KISS1R, TAC3, TACR3, and DAX1 (59,60,76).
However, chromosomal abnormalities (generally sporadic)
have been observed in 3% of patients with normosmic HH.
Such abnormalities include 46,XY/46,X,inv(Y)(p11.2q11.2)
and mos46,XY,t(3;12)(p13;p13)/46,XY (76,93).

Mutations in the GnRH gene were recently determined to
be a rare cause of normosmic HH in two human studies of
familial HH (94,95). The gene maps to chromosome 8q21-
p11.2 and encodes a large 92-amino acid precursor protein.
An autosomal recessive mode of inheritance for this trait has
been described, and homozygous frame-shift mutations
have been observed in probands (94,95). However, muta-
tions in the gene that encodes the G-protein-coupled
receptor for GnRH (GnRHR1) are the most common genetic
abnormality that is detected in patients with this disorder,
accounting for 5-40% of normosmic HH cases (3.5-16% of
sporadic cases and as many as 40% of familial cases) (93).
This gene maps to chromosome 4q13.2-3, spans over 18.9 kb
and encodes a 328-amino acid protein (96). Autosomal
recessive homozygous or compound heterozygous muta-
tions have been reported in familial cases (97-103). The
majority of GnRHR1 mutations are missense mutations that
cause single amino acid substitutions. Such mutations result
in variable functional effects, ranging from mild impairment
to complete inactivation of the receptor (104,105).

Recent studies have identified other ligand proteins and
their receptors, such as Kisspeptin and neurokinin B, the
functions of which are to regulate the differentiation of
GnRH neurons and to initiate their function during puberty.
The Kisspeptin (KSS1) gene has been mapped to chromo-
some 1q32, and a missense mutation in this gene causes
autosomal recessive inherited normosmic HH (62,106).
Moreover, Kisspeptin receptor (KSSR1, chromosome
19p13.3) mutations also exhibit autosomal recessive patterns
of inheritance, and both KISS1 and KISSR1 mutations
contribute to fewer than 5% of normosmic HH cases (107).
Mutations in neurokinin B (TAC3, chromosome 12q13-q21)
and its receptor (TACR3, 4q25) have also been implicated in
the pathogenesis of normosmic HH and exhibit autosomal
recessive inheritance patterns (108-110). Convertase 1 is an
endopeptidase that is encoded by the PCKS1 gene and is
involved in i) the post-translational modification of pre-
cursor GnRH and ii) the release of mature and active GnRH
(59). Mutations in the gene that encodes this protein have
been linked to anosmic HH, diabetes and obesity (111).
Finally, an X-linked mode of inheritance of normosmic HH
has been linked to DAX1 mutations, which cause congenital
X-linked adrenal hypoplasia (112).

Prader-Willi syndrome (PWS) is a complex genetic
disorder that is associated with various degrees of systemic
involvement. This condition is caused by the lack of
expression of paternally derived imprinted genes on
chromosome 15q11-q13. This lack of expression is due
either to the deletion of these genes, maternal uniparental
disomy of chromosome 15 or the disruption of the
paternally inherited chromosome 15 (9,90). Genomic
imprinting refers to a phenomenon in which certain genes
are expressed in a parent in an origin-specific manner. In
this situation, an allele from a given parent is silenced to
allow for the expression of non-imprinted genes from the
other parent. Genomic imprinting is observed in fewer than
1% of genes. Obesity, hyperphagia, growth retardation,
mild to moderate mental retardation, dysmorphic facial
features, and sleep abnormalities are the characteristic

features of Prader-Willi syndrome. Hypothalamic HH is a
consistent feature of all men with this syndrome (9). During
infancy, 80-90% of affected children exhibit cryptorchidism,
with a poorly developed scrotum and micropenis. Most
adolescents will exhibit delayed or incomplete puberty;
however, precocious puberty has been described in 4% of
patients (9,24,90). Maternally derived supernumerary mar-
ker chromosome (SMC) 15 is the most frequently observed
supernumerary chromosome marker in humans (50%). This
dicentric chromosome fragment arises from the two homo-
logous chromosomes 15 and is now referred to as dic(15).
This genetic defect was formerly referred to as inverted
duplication of chromosome 15 or inv dup(15). The size of
the fragment is variable; long fragments may contain the
PWS critical region and may lead to the development of
PWS, whereas short fragments do not contain this critical
region, in which case PWS is not observed. However,
azoospermia and mild facial dysmorphism, such as man-
dibular anomalies, have been reported in men that carry the
short fragment. Further genetic analysis of the genes on
chromosome 15 is lacking but may aid in our understanding
of the role of these genes in male infertility.

Adult-onset genetic hypothalamic HH
This disease category has recently been described and is

restricted to men who successfully completed pubertal
development (and who may already have children) and
who subsequently exhibited disruption of the HPG axis.
Testicular size in such patients is normal, but serum
testosterone and gonadotropins levels are low. Moreover,
an apulsatile pattern of LH secretion is observed in these
patients. A single study of 10 men with adult-onset HH
revealed a heterozygous PROKR2 mutation in one patient.
However, a good prognosis is expected in these men
following treatment with respect to their future fertility
potential and androgenization status (9).

Pituitary disorders that are associated with
hypogonadism
Male hypogonadism that is attributed to genetic pituitary

diseases is rare, and such conditions are divided into two
major categories: a) generalized or combined anterior
pituitary hormone deficiency, and b) selective gonadotropin
deficiency.

Generalized anterior pituitary hormone deficiency
Several mutations have been observed in men with

combined anterior pituitary hormone deficiency (CPHD).
Most of these mutations involve genes that code for
signaling molecules and transcription factors.
Transcription factors are DNA-binding proteins that facil-
itate the transcription of mRNA from DNA. The affected
hormones in CPHD include growth hormone, prolactin,
thyroid-stimulating hormone, and gonadotropins (LH and
FSH). ACTH may or may not be involved. Such mutations
may interfere with the early or late embryonic development
of the pituitary gland from Rathke’s pouch. Certain
mutations may give rise to various syndromes, such as
septo-optic hypoplasia and craniofacial abnormalities (113).
In addition to phenotypic variability, the appearance of the
pituitary gland on MRI is also variable in CPHD and ranges
from enlarged in cases with PROP1 mutations (113,114) to
normal or hypoplastic in patients with SOX2 mutations
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(114). Specifically, the implicated mutated transcription
factor genes that cause hypogonadism are the following:
PROP1 (most common), LHX and SOX2. Familial and
sporadic cases that exhibit autosomal recessive patterns of
inheritance are the most common forms of CPHD (114). To
accurately differentiate between hypothalamic and pituitary
HH, a GnRH stimulation test is performed. In hypothalamic
disorders, significant increases in gonadotropin levels are
observed, whereas no response is observed in patients with
pituitary hypogonadism.

Selective gonadotropin deficiency
FSH and LH are glycoproteins that are secreted by

anterior pituitary gonadotropes to stimulate testicular
spermatogenesis and testosterone production, respectively.
Each glycoprotein molecule is composed of a and b chains.
The a chain represents a common chain for LH, FSH, human
chorionic gonadotropin (hCG), and TSH, whereas the
different b chains of these hormones confer immunological
and biological hormone specificity. Selective gonadotropin
deficiency includes mutations in the genes that code for the
synthesis of FSH and LH and their receptors. Specifically,
mutations that affect hormone synthesis generally involve
the b chain genes, given that mutations in the a chain gene
(CGA, 6q12-21) are generally embryonically lethal due to
the lack of placental HCG synthesis (115).
FSH exerts its action through Sertoli cell receptors,

stimulating their proliferation in the immature testis. FSH
also stimulates and maintains spermatogenesis. FSH is
composed of an a chain, which is composed of 92 amino
acids and is non-covalently bound to the b chain (111 amino
acids). Rare b subunit (chromosome 11p13) mutations result
in isolated FSH deficiency, delayed or normal puberty and
small or normal-sized testes in association with severe
oligozoospermia or non-obstructive azoospermia (116-118).
The b subunit gene is composed of three exons and two
introns. To date, two missense and three stop codon
mutations with autosomal recessive modes of inheritance
have been detected (117,119-121). In contrast, FSH b knock-
out mice are not infertile, indicating differential regulatory
mechanisms in humans and mice (122,123). Furthermore,
rare mutations in the gene that encodes the FSH receptor
(FSHR), which is expressed in Sertoli cells, have variable
effects on spermatogenesis. In a study of five men who were
homozygous for FSHR mutations, none exhibited normal
semen parameters. Specifically, three patients exhibited
severe oligozoospermia and one exhibited moderate oligo-
zoospermia; the fifth patient exhibited a low semen volume
and teratozoospermia despite having a normal sperm count
(124). The FSHR gene has been mapped to chromosome
2p21-16 and consists of 10 exons and 9 introns (125,126).
This gene encodes the mature form of a G-protein-linked
glycoprotein receptor, which is composed of 678 amino
acids and is exclusively expressed in Sertoli cells (125).
Single missense inactivating mutations that result in a valine
to alanine substitution at position 189 (A189V) have been
reported; these mutations exhibit an autosomal recessive
mode of inheritance. Preliminary studies by Simoni et al.
(127) and Ahda et al. (128) have revealed differences in the
FSHR polymorphisms between fertile and infertile men.
Further research is required to clarify the genetic back-
ground of FSHR mutations.
LH initiates male pubertal development through its effect

on LH receptors on Leydig cells, which stimulate the release

of testosterone. Although reported in only five men,
recessively inherited missense mutations in the beta subunit
(121 amino acids) of the LH gene (19q13.3) result in delayed
or absent pubertal development and oligozoospermia or
azoospermia (129-131). The hormonal profile of such
patients indicates normal FSH levels, high LH immunor-
eactivity and low testosterone (129,130). The detected LH
does not exhibit biological activity. A variety of autosomal
recessive mutations (missense, insertion, deletion and
nonsense) have been observed in the gene that encodes
the G-protein-linked LH receptor. Such mutations result in
variable phenotypic traits and infertility. Interestingly, LH
glycoprotein receptors (674 amino acids) respond not only
to LH but also to hCG and are thus occasionally referred to
as LhCGRs. These receptors are present not only in Leydig
cells but also in sperm, seminal vesicles, the skin, the
thyroid and other organs, where they have an unidentified
physiological significance. The gene for the LH receptor has
been mapped to chromosome 2p21 and consists of 11 exons
and 10 introns (132). This genomic location is close to that of
the FSHR gene, and mutations in the LH receptor gene
result in Leydig cell hypoplasia (LCH) or agenesis (115,133).
LCH exhibits a wide spectrum of manifestations, ranging
from male pseudohermophroditism in cases of 46,XY
(female external genitalia, undescended abdominal testes,
absent breast development) to selective, milder under-
virilization defects, such as micropenis, hypospadias, and
cryptorchidism (115).

Genetic testicular disorders (GTDs)
Genetic testicular disorders that cause male infertility can

be divided into three categories according to the specific
altered function: 1) genetic testicular disorders that primar-
ily affect spermatogenesis and androgen production; 2)
genetic testicular disorders that primarily affect spermato-
genesis; and 3) genetic testicular disorders linked to
androgen synthesis or action.

GTDs that affect spermatogenesis and androgen
production
Klinefelter syndrome. KLFS is the most common cause

of hypogonadism and infertility in males (1 in 500).
Klinefelter syndrome is also the most common
chromosomal aneuploidy that is observed in azoospermic
men (10%) (134); specifically, azoospermia is detected in
74% of men with KLFS (134). The mechanisms of infertility
associated with KLFS include a lack of the potential for
testicular growth, premature degeneration of the primordial
germ cells before puberty and the early or late maturation
arrest of spermatogenesis at the primary spermatocyte
stage. Later stages of sperm development can also be
affected (39). Generally, two forms of KLFS are observed:
non-mosaic, (47,XXY, 85% of cases) and mosaic (47,XXY/
46,XY, 15% of cases). Twenty-five percent of patients with
non-mosaic KLFS have sperm in their ejaculate (32). Rare
cases of KLFS are caused by isochromosome Xq i(Xq) or X-Y
translocations in 0.3-0.9% of males with X chromosome
polysomies (135,136). Residual spermatogenesis is observed
in men with both mosaic and non-mosaic forms of KLFS.
In addition to very small (1-3 ml) and firm testes,
gynecomastia (40%) and features of male hypogonadism
are also present, such as sparse facial and pubic hair growth,
loss of libido and erectile dysfunction. Low testosterone is
observed in as many as 80% of men, an effect that is
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attributed to small testicular growth despite the presence of
Leydig cell hyperplasia.

Several studies have demonstrated that KLFS patients
exhibit a high incidence of aneuploid gametes, rendering
them at risk for producing offspring with chromosomal
abnormalities (137). Interestingly, the successful fathering of
60 children has been achieved by testicular sperm extraction
(TESE) and ICSI in men with KLFS. Karyotype studies that
were performed in approximately 50 children revealed no
chromosomal abnormalities (138,139). These genetic find-
ings have been further clarified in a study by Sciurano et al.,
who detected spermatogenesis foci in testicular biopsies of
6/11 men with nonmosaic KLFS (140). Whereas the majority
of seminiferous tubules are devoid of germ cells, 8-24% do
contain germ cells. Sciurano et al. examined the chromoso-
mal complements of 92 meiotic spermatocytes using
fluorescent in situ hybridization (FISH). These spermato-
cytes exhibited euploidy (normal chromosomal constitu-
ents) and the ability to form haploid gametes (140). These
novel findings may explain the high rate of normal children
who are born following testicular sperm extraction and ICSI
in men with KLFS. Nonetheless, even with this high rate of
normally born children, there is still a risk of genetic defects
in the offspring; therefore, it is advised that a preimplanta-
tion genetic diagnosis (PGD) be offered prior to ART to
ensure that the offspring are not aneuploid (39).

XX males. This genetic disorder is very rare, with an
estimated prevalence of 1:10,000-1: 20,000 (141). The genetic
event that causes this disorder involves the translocation of
genetic material of the testis-determining region of SRY (or
SOX A, a gene that lies on the Y chromosome) to the X
chromosome during paternal meiosis. SRY encodes a
transcription factor of approximately 204 amino acids
(142). This translocation results in the successful
differentiation of indeterminate gonads into testes;
however, the lack of other genes involved in the initiation
of spermatogenesis renders these males azoospermic.
Furthermore, SRY-negative variants have also been
described, which are characterized by severe
undervirilization defects, such as undescended testes,
hypospadias and bifid scrota (143). Phenotypically, these
men are very similar (but with smaller statures) to patients
with KLFS (144).

Mutations in X-linked USP26. The USP26 gene is a
single-exon gene that maps to chromosome Xq26.2. This
gene encodes the USP26 protease (913 amino acids), which
is a deubiquitinating enzyme (145,146). The ubiquitination
and deubiquitination of macromolecules are essential for
the regulation of the cell cycle, maintenance of chromosomal
structure and gene silencing (145). The removal of histones
and the regulation of protein turnover during meiosis are
important functions of this protein. More than twenty
mutations in this gene have been reported. These
mutations result in the severe impairment of
spermatogenesis, and several result in hypogonadism
(147). Studies have demonstrated a relationship between
this gene and certain cases of non-obstructive azoospermia
(148,149).

X-linked SOX3 mutations. The SOX genes are essential
for development and control of embryonic ontogenesis in
the human testes, neural tissues, cartilage, and neural crest
cells. These genes are present only in vertebrates and give
rise to SOX proteins that have a role in both the developing
and adult gonads. These proteins share a common 79-amino

acid DNA binding domain that is characteristic of a large
protein superfamily that is referred to as the high mobility
group (HMG) due to the high migration rate of these
proteins in polyacrylamide gels (150). SOX proteins
specifically bind to the DNA minor groove and regulate
gene expression by acting either as transcriptional activators
or repressors (150). The name SOX is derived from the first-
discovered Y-linked SOX gene, i.e., sex-determining region
Y (SRY). The other genes in this family are therefore referred
to as SRY-box (SOX) genes. The SOX genes are divided into
several groups, from A to H, with group A consisting only
of the Y-linked SRY (150). SOX3 is X-linked (Xq26.3) and
belongs to the SOX B1 group. The SOX3 gene is specifically
expressed in developing testicular and neural tissues and
encodes the SOX3 transcriptional activator (151,152).
Solmon et al. and Woods et al. correlated genetic
mutations in the SOX3 gene with hypopituitarism and
mental retardation (153,154). Recessively inherited
polymorphic mutations in SOX3 have been observed in
men with idiopathic oligozoospermia and in mice with
severely impaired sperm production and hypogonadism
(155,156).

Bilateral anorchia. Bilateral anorchia is a rare congenital
disease with an estimated prevalence of 1 in 20,000 males.
This condition is characterized by the absence of testicular
tissue in 46,XY individuals (157). Because male infants who
are born with this disorder exhibit normal genital
differentiation, the absence of testicular tissue is most
likely attributed to testicular regression that occurs in the
second half of gestation. A micropenis is observed in half of
these cases (157). The exact etiology of this disease is
unknown; however, a subset of cases exhibit familial
clustering, suggesting a genetic etiology. Philibert et al.
recently noted the role of mutated steroidogenic factor-1
(NR5A1), which is a member of the nuclear receptor family,
in the disease etiology. These genes regulate the
transcription of other genes that control the development
of adrenal and gonadal tissues (158). NR5A1 has been
mapped to chromosome 9q33 and has been correlated with
other human diseases, such as male infertility, hypospadias,
ovarian insufficiency, and others (158).

Noonan syndrome. Noonan syndrome is a relatively
common heterogeneous genetic disorder that results in a
wide array of clinical manifestations and genotypic
abnormalities. Its incidence ranges from 1:1,000 to 1:2,500
live births, and it is inherited in an autosomal dominant
manner (150). To date, nine genes have been implicated in
Noonan or Noonan-associated syndromes (PTPN11, SOS1,
KRAS, NRAS, RAF1, BRAF, SHOC2, MEK1, and CBL) (159).
The basic cellular abnormalities that are caused by
mutations in these genes are defective signal transduction
pathways, particularly the RAS-GTPase and mitogen-
activated protein kinase (MAPK) signaling cascades (159).
The typical phenotypic features of Noonan syndrome
include a short stature, a webbed neck, facial
dysmorphism, congenital pulmonic stenosis and other
manifestations. Unilateral and bilateral cryptorchidism are
frequent in this syndrome and are observed in as many as
77% of patients (160). Moreover, delayed or absent pubertal
development in males with this syndrome is attributed to
testicular failure (161). Therefore, altered spermatogenesis
with oligozoospermia or azoospermia is multifactorial due
to the basic genetic defect itself and its association with
cryptorchidism.
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45X/46,XY mosaicism (mixed gonadal dysgenesis).

Normal male external genitalia are observed in 90% of
males with 45,X/46,XY mosaicism; abnormal, ambiguous
and female genitalia are observed in the other 10%. Mixed
gonadal dysgenesis (a streak gonad on one side and a testis
on the other) is observed in 10-30% of patients with this type
of mosaicism (162). Abnormal gonadal development results
in azoospermia and low testosterone levels (163).

GTDs that affect spermatogenesis
Y chromosome microdeletion. The long and short arms

of the Y chromosome contain many genes that regulate
spermatogenesis and testes development, respectively.
Microdeletions on the long arm of the Y chromosome (Yq)
are well correlated with male infertility. Yq microdeletions
are detected in approximately 13% of men with non-
obstructive azoospermia and in 5% of men with severe
oligozoospermia (sperm counts lower than 5 million/mL)
(164,165). A microdeletion is defined as a chromosomal
deletion that spans several genes but that is small in size
and cannot be detected using conventional cytogenetic
methods (e.g., karyotyping). Y chromosome microdeletions
are clustered in intervals 5 and 6 of the long arm of the Y
chromosome. This region at Yq11 is referred to as the
‘‘Azoospermia Factor’’ (AZF) region. The AZF region is
further subdivided into three subregions that are termed
AZFa, AZFb, and AZFc (Figure 1). The most common
aberrations in the AZF region are multiple gene deletions in
the AZFb and AZFc sub regions (166), which can produce a
wide range of infertility phenotypes. The genes on the
Y chromosome are generally divided into three types:
‘‘X transposed’’, X degenerated, and amplicons. Eight
palindromes are recognized in the AZF region and six of
these are related to male fertility. Six of the genes that are
located in the AZF regions are expressed exclusively in the
testes and are therefore referred to as ‘‘AZF candidate
genes’’.
The AZFa region is the smallest portion of the AZF and

spans approximately 400-600 kb of DNA. It is located in the
proximal portion of interval 5. The AZFa region is
characterized by a non-repetitive structure and a low
deletion frequency. This subregion contains three genes:
USP9Y, DBY (DDX3Y) and UTY. Two protein-coding genes
are directly related to male infertility: USP9Y and DBY
(recently termed DDX3Y). Complete and partial deletions of
AZFa have been described. Complete deletions that remove
both genes cause Sertoli cell-only syndrome (SCOS) and
bilateral small-sized testes (167,168). It is estimated that 9-
55% of SCOS cases are caused by deletions in the AZFa
region (169-171). Partial deletions have also been reported,
with particular involvement of USP9Y. The DBY gene is the
major single-copy gene in the AZFa region and belongs to
the DEAD BOX RNA helicase family. This family consists of
a group of genes that encode proteins that specifically
regulate RNA transcription, translation, and splicing in the
G1 phase of the cell cycle. DBY expression is observed in the
male germ line, whereas its expression in other tissues is
uncertain (172). DBX, a DBY homologue, belongs to the
same family as DBY and is expressed in male germ cells. Its
expression pattern has been elucidated by immunohisto-
chemistry techniques. The DBY gene and protein are
specifically expressed in premeiotic germ cells, whereas
the DBX gene and protein are expressed in postmeiotic
germ cells (172). This differential distribution explains why

deletions of the DBY gene can result in SCOS and
azoospermia. The USP9Y gene is a single-copy gene that
encodes a ubiquitin-specific protease (a deubiquitinating
enzyme). This enzyme binds to ubiquitin-protein conjugates
and hydrolyzes the ubiquitin peptide chain. Such action
confers stability to cellular proteins and protects them from
cellular degradation by the proteasome complex (173). The
expression of USP9Y is restricted to spermatids in humans
and mice (174,175). USP9Y expression in male germ cell
lines may lead to the stability of certain cellular proteins that
are synthesized in primordial germ cells (PGCs) and that are
important for germ cell survival. Point mutations in the
USP9Y gene result in maturation arrest at the spermatid
stage (176), oligozoospermia (177), oligoasthenozoospermia,
and asthenozoospermia (178).
The AZFb subregion spans approximately 6 Mb and is

located in the distal portion of interval 5 and the proximal
portion of interval 6 (subinterval 5O-6B) (179). The meiotic
arrest of spermatogenesis at the primary spermatocyte stage
is usually observed when AZFb is deleted. AZFb contains
32 genes and overlaps with AZFc (179). As such, AZFb
deletions often remove certain genes from the AZFc region
(e.g., DAZ1 and DAZ2), as well as one copy each of BPY2,
CDY1, and PRY. The primary protein-encoding genes in
AZFb are RBMY and PRY. Six copies of RBMY are located in
the distal portion of AZFb and are only expressed in germ
cells (180). RBMY encodes four types of testis-specific RNA-
binding proteins that are involved in mRNA processing,
transport, and splicing (181). Due to its proximity to AZFc,
certain deletions within AZFc can remove several copies of
RBMY genes. Two copies of PRY are located in the AZFb
region and presumably regulate apoptosis (167).
Hypospermatogenesis is observed when all of the AZFb
genes are deleted except for RBMY and PRY. Conversely,
spermatogenesis is completely arrested when both the
RBMY and PRY genes are deleted (182,183).
AZFc spans over 3.5 Mb and contains a large number of

amplicons that are arranged as direct repeats, inverted
repeats, or palindromes. Examples of these repeats include
b, g, r, and P repeats. Seven distinct gene families,
encompassing 23 genes, are observed in the AZFc region.
These families include PRY (two copies), TTY (eight copies),
BPY (three copies), DAZ (four copies), GOLGA2LY (two
copies), CSPYG4LY (two copies), and CDY (two copies).
Deletions in the AZFc region alone or deletions in this
region that are combined with deletions in other AZF
regions are the most common types and account for as
many as 87% of Yq microdeletions. The incidence of these
deletions is 1/4,000 males. Although AZFa and AZFb
deletions result in azoospermia, deletions in the AZFc
region can result in either azoospermia or oligozoospermia
(184). AZFc deletions can explain approximately 12% of
non-obstructive azoospermia and 6% of severe oligozoos-
permia cases (185). Two scenarios have been described
regarding the cause of complete AZFc deletions, namely, a
new deletion in addition to a preexisting partial deletion or
a complete deletion of a preexisting normal gene. AZFc
deletions may jeopardize Y chromosome integrity, resulting
in its loss and sex reversal. As such, AZFc deletions
predispose one’s offspring to the 45,X0 karyotype (186)
and to the mosaic phenotype 45,X/46,XY (187).
Two types of AZFc deletions have been described. The

classic AZFc deletion is denoted by b2/b4. This deletion
encompasses four DAZ genes, resulting in azoospermia.
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Partial or sub-deletions are denoted by gr/gr, b1/b3, and
b2/b3. The gr/gr subdeletion removes nearly half of the
AZFc region and results in different phenotypes in various
populations. Such variability suggests that other confound-
ing factors may be involved, such as ethnicity and
environmental effects on gene expression. Although certain
studies have recognized gr/gr deletions as a risk factor for
impaired spermatogenesis (168,188-190), others failed to
conclusively demonstrate this relationship (191-193). The
deletion of b1/b3 removes the proximal portion of AZFc.
Two of the six copies of RBMY1, the two functional copies of
PRY (194), one of the three copies of BPY2 and two of the
four DAZ genes are deleted. Nevertheless, large 1.8-Mb
deletions have been observed in normozoospermic fertile
individuals (195), whereas other researchers have identified
this deletion in azoospermic men (196,197). The deletion of
b2/b3 removes nearly half of the AZFc region (1.8-Mb DNA
segment) and 12 genes, including two copies of DAZ and
two copies of BPY. With respect to b1/b2, no conclusive
impact on spermatogenesis has been determined (198,199).

The coding genes in AZFc include DAZ and CDY. DAZ
plays important roles throughout germ cell development
from embryonic life to adulthood; there are four copies of
this gene on the Y chromosome (210,211). Postnatally, DAZ
encodes proteins that have RNA recognition motifs (RRMs),

which are involved in the regulation of RNA translation
(200) and control of meiosis. DAZ is essential for the
maintenance of the PGC during embryogenesis (201). DAZ2
and DAZ3 each have a single RRM, whereas DAZ1 has two
and DAZ4 has three RRMs. There are two autosomal
homologues of DAZ: DAZL on chromosome 3q24.3 and
BOULE on chromosome 2q33. DAZ gene expression was
observed to be reduced in azoospermic patients (202), and
partial deletions of DAZ genes appear to be related to
oligozoospermia. Two copies of the chromodomain protein
Y-linked (CDY) gene are located in the AZFc region. CDY is
expressed exclusively in germ cells, where it encodes a
protein that contains a chromodomain and a histone
acetyltransferase catalytic domain, which is primarily
observed in the nucleus of late spermatids. (167). This
protein regulates histone hyperacetylation, which is essen-
tial to proceed from a histone- to a protamine-based
chromatin structure in spermatid nuclei.
Other Y chromosome genes, excluding those that are

clustered in intervals 5 and 6 of the long arm, may
participate in spermatogenesis. Copies of the TSPY gene
have been detected on both Yp and Yq. The protein product
of this gene is expressed in spermatogonia and is believed to
play a role in the timing of spermatogenesis by signaling to
spermatogonia to enter meiosis (168,203). A study of copy

Figure 1 - Schematic representation of the Y chromosome that depicts the AZF region, the AZF subregions and the primary genes
within each subregion. Adapted from: O’Flynn, O’Brien KL, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a
review, pages 1-12, copyright 2010, Fertil Steril 93, with permission from Elsevier via the Copyright Clearance Center (Order Detail ID:
62879217).

Genetics and Azoospermia
Hamada AJ et al.

CLINICS 2013;68(S1):39-60

48



number variations of the TSPY gene revealed that more
copies were present in infertile patients (204). This finding
warrants further investigation of TSPY to characterize its
role in azoospermia.
Autosome translocations. Translocations can cause loss

of genetic material at gene breakpoints, thereby corrupting
the genetic message (205). Autosomal translocations were
determined to be 4-10 times more likely in infertile males
than in normal males (206,207). Robertsonian translocations,
which occur when two acrocentric chromosomes fuse, are
the most frequent structural chromosomal abnormalities in
humans (32). Although the prevalence of Robertsonian
translocations is only 0.8% in infertile males, this prevalence
is 9 times higher than that in the general population (39,208).
Such translocations can result in a variety of sperm
production phenotypes, from normal spermatogenesis to
azoospermia (39). Robertsonian translocations are more
common in oligozoospermic and azoospermic men, with
rates of 1.6 and 0.09%, respectively (209,210). Given the risk
of passing on the translocations to offspring,
preimplantational genetic screening may be advisable for
couples who undergo ART (41).
Monogenic disorders. DAZL is a single-copy gene that is

located on chromosome 3. DAZL belongs to the DAZ gene
family and is the autosomal homologue of the DAZ gene
that is located on the Y chromosome. DAZL is expressed in
fetal primordial germ cells, fetal gonocytes and adult male
and female germ cells in both the nucleus and cytoplasm.
The DAZL protein may regulate protein synthesis and
meiosis (211). Although mice with DAZL null mutations are
sterile in both sexes and the male germ cells of these animals
are arrested at the leptotene stage, no conspicuous
mutations in human DAZL that result in sterility have
been recognized. Nevertheless, Teng et al., when examining
a group of azoospermic and oligozoospermic men in
Taiwan, reported that a subset of these men were
heterozygous for the single nucleotide polymorphism
386A_G (212). However, these results have not been
confirmed in Caucasian men (228), and more studies are
required in different populations to examine the role of
DAZL mutations and polymorphisms in azoospermia.
The methylenetetrahydrofolate reductase (MTHFR) gene,

which is located on the short arm of chromosome 1, encodes
an enzyme that catalyzes the conversion of 5,10-methylene-
tetrahydrofolate to 5-methyltetrahydrofolate. This reaction
is important for methionine and S-adenosylmethionine
(SAM) synthesis from homocysteine, which is a toxic
product, as well as for the synthesis of thymidine. SAM
serves as a methyl donor for DNA methyltransferase, which
controls DNA methylation, an important process in germ
cell development. A recent meta-analytic study revealed
that individuals who were homozygous for the single
nucleotide polymorphism (SNP) 1298CC (i.e., the CC vs.
AA genotype) or who carried a recessive allele (CC vs. AA/
AC) were at an increased risk of azoospermia (OR=1.66 for
CC vs. AA; OR=1.67 for CC vs. AA/AC genotype) (213).
This SNP inserts an alanine at position 429. In another meta-
analysis, the presence of a MTHFR 677T mutation, in which
a valine substitution occurs at amino acid 222 and thus
encodes a thermolabile enzyme with reduced activity, is
associated with a significantly increased risk of azoospermia
(214).
Multifactorial disorders. Cryptorchidism causes an

infertile phenotype and appears to be influenced by

genetic factors. Mutations in the INSL3 gene (insulin-like 3
on chromosome 19) and its receptor LGR8 (relaxin/insulin-
like family peptide receptor 2 on chromosome 13) occur in
approximately 5% of men with cryptorchidism and have
been linked to the disease (215). Additionally, the first phase
of normal testicular descent is controlled by INSL3 (216).
The INSL3 gene may also participate in testicular
dysgenesis syndrome (TDS) (217), which comprises a
variety of disorders that may present alone or in
combination. Such disorders include cryptorchidism,
hypospadias, an elevated risk of testicular cancer, and
infertility. It has been suggested that TDS results from a
combination of genetic, environmental, and lifestyle factors
(218).

GTDs that affect androgen action or production
Androgen receptor mutations. The androgen receptor

(AR) gene is a single-copy gene that is located on Xq11-q12.
This gene encodes a cytoplasmic protein that binds
specifically to testosterone, and the resultant complex can
activate the expression of certain DNA segments. AR is
essential for meiosis, in which spermatocytes are converted
into round spermatids, and for the appearance of secondary
sex characteristics. The AR gene consists of eight exons. Exon
1 encodes the transactivation domain, which activates
transcription; exons 2-3 encode the DNA binding domain
(DBD); exons 5-8 encode the ligand-binding domain (LBD);
and exon 4 encodes the hinge region that connects the DBD
and the LBD. From 2004 to the present, the number of
reported mutations in the AR gene increased from 605 to
1,029; these mutations have been linked to prostate cancer,
male infertility and breast cancer (219). Point mutations,
insertions or deletions, and altered CAG repeats can severely
impair the amount, structure and function of the AR gene,
causing androgen insensitivity syndrome (AIS). The
phenotypic manifestation of AIS includes ambiguous
genitalia, partial labialscrotal fusions, hypospadias, bifid
scrota and gynaecomastia (220). Testosterone and LH levels
are consistently elevated in patients with AIS. Although no
mutations have been identified in more than 40% of patients,
others reported point mutations and polymorphisms in the
AR gene in azoospermic men who exhibit normal external
genitalia. Alterations in two polymorphic trinucleotide
repeats (CAG and GGC) in the 5’ region of exon 1 have
been implicated in male infertility and azoospermia.
Mirfakhraie et al. identified the transversion of 1510CRA
in exon 1 of the AR gene in a single patient with SCOS (221).
Hose et al. discovered the novel mutation 212ARG in the
CAG repeat that resulted in a glutamine-arginine
substitution in men with SCOS (222). Although GGC
polymorphisms or repeat length alterations are inversely
correlated with the transactivation ability of the receptor
(223), no marked effects on male fertility potential have been
observed.
Steroidogenic acute regulatory protein (StAR)

mutations. Testosterone is the most important male
androgen, and the major site of its production is the
Leydig cells, which account for 75% of testosterone
synthesis. Steroidogenic acute regulatory protein (StAR)
facilitates the transfer of cholesterol from the outer to the
inner mitochondrial membranes; this is the rate-limiting
step of testosterone synthesis (224). Congenital lipoid
hyperplasia is a rare disease that is caused by frame-shift,
missense and nonsense mutations in the StAR gene. This
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gene spans 8 kb, consists of seven exons and six introns and
maps to 8p11.2 (225). Because StAR is the first essential step
in the synthesis of all of the steroid hormones in all steroid-
synthesizing cells, the classic deficiency of StAR results in a
lack of corticosteroids, mineralocorticoids and testosterone.
Males with the classic form are born with feminized external
genitalia. Given that the condition is life-threatening, the
delayed administration of proper hormonal replacement
may lead to fatal outcomes shortly after birth. However, a
non-classic form has also been described and is
characterized by partial protein activity. In such a form,
males may be born with external genitalia; nonetheless,
they may exhibit compromised fertility potential and
azoospermia (226).

3BHSD type 2 deficiency. 3BHSD type 2 is one of the
intracellular adrenal and gonadal enzymes that is necessary
for the synthesis of all steroids. Mutations in the 3BHSD
type 2 gene (located at 1p11-13) result in the salt-losing or
non-salt-losing forms, which are characterized by female-
like genitalia at birth in 46,XY males. These males may
develop secondary sexual characteristics at puberty (227).

SRD5A2 mutation. SRD5A2 is a gene that maps to 2p23
and encodes 5-alpha reductase type 2. This enzyme is
present in the external genitalia and prostate. Autosomal
recessive homozygous mutations in this gene result in
feminized external genitalia in 46,XY males. At the time of
puberty, signs of masculinization develop due to the activity
of 5-alpha reductase type 1 (SRD5A1) in the skin and liver.
However, other features, such as prostatic hypoplasia, less
body hair and a female frontal hair line, remain. These men
are often infertile due to prostatic underdevelopment.
Nevertheless, fertility has been reported in certain men
due to partial enzymatic activity, which can be conferred by
different types of mutations. Epidemiologically, this disease
has been reported more frequently in an isolated area in the
Dominican Republic (228).

Dysfunctional cell regulatory pathways
Genetic defects at the levels of germ or Sertoli cells in

azoospermic men may result from impaired cellular
regulatory pathways, culminating in the loss of the germ
cells or the arrest of spermatogenesis (229-286). First,
exaggerated apoptotic signals due to mutations in the genes
that encode for enzymes with crucial roles in apoptosis,
such as inducible nitric oxide synthase (iNOS), Fas, FasL,
and active caspase 3, affect germ cell proliferation and may
result in azoospermia with the SCOS phenotype (245-250).
Second, impaired cross-talk or increased immune injury due
to mutations in the genes that encode interleukins may lead
to maturation arrest or SCOS (229-232). Third, the disrup-
tion of Sertoli cell cytoskeletal integrity can result in an
inefficient supportive role for spermatogenesis. An intact
germ cell cytoskeleton is essential for the regulation of germ
cell development; maturation arrest and SCOS are observed
when the cell cytoskeleton is disrupted (233-243). Fourth,
the cell cycle in mitosis or meiosis should pass through four
important phases: G1, S, G2 and M. A defect in any of these
phases can result in cell cycle arrest or apoptosis (244-249).
Fifth, impaired signal transduction may undermine the
response of testicular cells to activating factors, such as
hormones and growth factors (248-257). Finally, selective
defects in the genes encoding transcription factors in germ
and/or supporting cells, such as DAX-1 and nuclear export
factor (NF2), have been implicated in NOA (283,284).

Epigenetic defects. Disturbed germ cell nuclear histone
acetylation and single-stranded DNA break repair have
been implicated in SCOS and maturation arrest (258).

Genetic abnormalities at the primordial germ cell
level
The specification, formation, and migration of primordial

germ cells toward the developing gonads are all under
complex genetic control (287-290). Moreover, several genes
regulate the settlement process of primordial germ cells
within the testes, the protection of these cells from
apoptosis, the formation of gonocytes and the differentia-
tion of germ cells into spermatogonia (291). Spermatogonia
undergo proliferative phases that are regulated by many
external and internal factors that are encoded by specific
genes. Certain genes are activated in each germ cell stage,
whereas others are repressed. Selective mutations in the
genes that regulate human primordial cell lines are likely to
affect male fertility status and may also explain certain cases
of non-obstructive azoospermia.

& GENETIC TESTING IN AZOOSPERMIA

There are three groups of genetic tests used to detect
genetic diseases in azoospermic men: a) cytogenetic tests
that detect chromosomal aneuploidy and structural altera-
tions, such as conventional karyotyping; b) polymerase
chain reaction to detect Y chromosome microdeletions; and
c) specific gene sequencing for mutational analysis of a
specific gene.
Conventional karyotyping involves the collection of

heparinized peripheral blood samples (approximately
5 ml) from the patient and the isolation of a plasma
lymphocyte suspension. Lymphocytes are then transferred
to culture media (RPMI) containing a mitotic stimulator
(PHA) and incubated for 72 hours. After 70 hours, cell
division is arrested at the metaphase stage using colchicine.
The cells are then subjected to hypotonic treatment (KCl)
and fixed with Karnovsky fixative overnight at 4 C̊. Finally,
the cells are spread on a clean, grease-free wet slide and
subjected to GTG banding for karyotyping (292). The
standard protocols are available in various practical guide-
lines and should be optimized for different laboratory
conditions (293). Cytogenetic analysis is the most frequently
used diagnostic test in the evaluation of patients with
azoospermia (294,295).
The Y chromosome microdeletion (YCMD) assay is a

PCR-based blood test that detects the presence or absence of
defined sequence-tagged sites (STSs). This technique there-
fore enables the detection of the presence or absence of any
clinically relevant microdeletion. Yq microdeletion analysis
is generally performed using multiplex polymerase chain
reaction (PCR) to amplify the AZFa, AZFb, and AZFc loci in
the long arm of the Y chromosome. The set of PCR primers
that are used to amplify the AZF regions is important in
the identification of deletions (296). The PCR should be
performed at least twice in the presence of an internal
control (SRY), as well as positive and negative controls, to
confirm the presence of deletions. PCR is a rapid method for
the detection of submicroscopic Y chromosome deletions,
which conventional cytogenetic analysis is unable to
resolve. To obtain uniform results, it is necessary to follow
the same guidelines for the entire examined population. The
European Association of Andrology (EAA) recommends the
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use of a set of seven markers in men with idiopathic
infertility who present with severe oligozoospermia or
azoospermia: six STSs in the AZF locus, and one STS
(sY14) in the SRY locus, the latter of which is the internal
control. Y chromosome infertility is inherited in a Y-linked
manner.
For specific gene sequencing and mutational analyses, the

‘‘dye terminator sequence’’ method is performed. This
method is a high-throughput, automated, more efficient
and more rapid method than the original Sanger method of
sequencing. The principle, which is similar to that of
Sanger’s method, depends on the premature termination
of four separate sequencing reactions that contain all four of
the standard deoxynucleotides (dATP, dGTP, dCTP, and
dTTP) and the DNA polymerase. To each reaction is added
only one of the four dideoxynucleotides (ddATP, ddGTP,
ddCTP, or ddTTP), which are chain-terminating nucleotides
that lack the 3’-OH group required for the formation of a
phosphodiester bond between two nucleotides. Thus, DNA
strand extension is terminated, resulting in DNA fragments
of varying lengths. Next, these labeled DNA fragments are
separated by gel electrophoresis on a denaturing polyacry-
lamide-urea gel and read in a specific manner from the
shortest to the longest (297).
Table 2 summarizes the currently available genetic tests

for azoospermic men who seek fertility counseling.

& EXPERT COMMENTARY

The aim of this article was to review the current
knowledge of the genetic basis of azoospermia and to
highlight the requirement for genetic testing in such
conditions. Thousands of single or multiple genes are
involved in establishing the male fertility potential, and
many others are yet to be revealed. Currently, genetic
testing ranges from the chromosomal level to specific gene
mutations. Single gene disorders are important for under-
standing the etiology of male infertility. Moreover, testing
can aid in the improved management of couples who seek
genetic counseling prior to conception.
The initial evaluation of infertile men generally com-

mences with history taking and a thorough physical
examination. These steps are followed by an initial seminal
fluid analysis and, if required, endocrine profile testing and
imaging analysis. Until approximately two decades ago, the
understanding of the genetic basis of infertility was of
limited value for it provided only a diagnosis. In the current
era of ART, however, genetic testing have emerged as tools
of paramount importance in helping clinicians not only to
explore the specific genetic background of a disease but also
to take the necessary precautions to prevent the transmis-
sion of the disease to the offspring via assisted conception.
Certain genetic defects are associated with increased
morbidity, childhood cancer and genital ambiguity. As such,

Table 2 - Genetic testing that is currently available for the investigation of azoospermia

Phenotype Genetic point of interest Type of testing

Post-testicular azoospermia (obstructive

azoospermia)
CFTR gene

Mutational analysis of the CFTR gene in cases of CAVD,

congenital epididymal obstruction and normal vasa, and

Young syndrome

Long arm of the Y chromosome
Polymerase chain reaction to detect Y chromosome

microdeletion

Testicular azoospermia (non-obstructive

azoospermia)
Autosome and sexual chromosomes

Cytogenetic analysis to detect chromosomal aneuploidy and

structural alterations

Androgen receptor gene
CAG repeat/AR mutation analysis for androgen

insensitivity syndrome (AIS)

X-linked USP 26, X-linked SOX3, LH and FSH

receptors, X-linked TAF7L, DAZL, MTHFR, ER1,

ER2, and FSH

Mutational analysis of the specific gene

KAL1, FGFR, PROK2, PROKR2, FGF8, CDH7,

KISS1, GPR54, TAC3, TACR3, GnRH, and

GnRHR

Mutational analysis of genes related to Kallmann syndrome

and normosmic HH

Pre-testicular azoospermia (HH) PROP1, LHX, and SOX2
Mutational analysis of genes related to generalized pituitary

insufficiency
FSH and LH genes, and FSH

and LH receptor genes
Mutational analysis of the genes that code for the secretion of

FSH and LH, and their receptors, in cases of selective

gonadotropin deficiency

Complex/multifactorial genetic disorders NR5A1 gene Mutational analysis of the specific gene in cases of bilateral

anorchia

INSL3 gene and its receptor Mutational analysis of the specific genes in cryptorchidism

PTPN11, SOS1, KRAS, NRAS, RAF1, BRAF,

SHOC2, MEK1, and CBL genes

Mutational analysis of the specific genes in Noonan syndrome

Chromosome 15 Cytogenetic/FISH analysis to detect deletions, maternal

uniparental disomy of chromosome 15q11-q13 or the

disruption of paternally inherited chromosome 15 in Prader-

Willi syndrome

Steroid 5-alpha-reductase

2 (SRD5A2) gene

Mutation analysis of the specific gene in cases of SRD5A2deficiency

CAVD: congenital agenesis of the vas deferens; CFTR: cystic fibrosis transmembrane regulator protein, FISH: fluorescence in situ hybridization; FSH:

follicle-stimulating hormone; LH: luteinizing hormone; GnRH: gonadotropin-releasing hormone; HH: hypogonadotropic hypogonadism.
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genetic testing in azoospermic males allows couples to
make educated decisions regarding their choice to use a
sperm donor or to opt for advanced assisted conception
techniques. Such techniques can be coupled with pre-
implantation genetic diagnosis (PGD) if an abnormal
result is obtained. Compiling the data from the initial
evaluation that include history and physical examination
may segregate azoospermic men into four major groups
based on their probability of harboring male fertility-
related genetic diseases. For the first group, who present
with a history and a physical examination that is
consistent with cryptorchidism, Noonan syndrome, bilat-
eral anorchia or Prader-Willi syndrome, certain genetic
tests are available; however, these tests are not routinely
used. In the second group, azoospermic men with clear
evidence of seminal duct obstruction based on physical
examination (CBAVD, Young syndrome) require testing
for CFTR mutations. The third group encompasses men
with non-obstructive azoospermia. For such individuals,
after the exclusion of acquired testicular pathologies and a
history of exposure to gonadotoxins, such as radiation and
chemotherapy, genetic testing, including karyotype and
Yq microdeletion analyses, should be set as minimum
standards (Table 2). Lastly, for men with feminized or
ambiguous external genitalia, the genetic workup should
also include androgen receptor genetic analysis.

Chromosomal defects are the most common genetic
abnormalities in infertile men with azoospermia and may
account for as many as 15% of cases (298-302). The most
common chromosomal aberrations that are associated with
severe spermatogenic defects are sex chromosome aneu-
ploidies and chromosomal translocations. Among the
various cytogenetic abnormalities, Klinefelter syndrome is
the major cytogenetic/sex chromosome/numerical anomaly
that is detected in infertile men, followed by translocations,
deletions and inversions. Cytogenetic abnormalities may
predispose to malsegregation and/or abnormal embryonic
development (303). Moreover, the occurrence of aneuploid
embryos after IVF and ICSI will not only decrease the
success rate of the treatment (304) but also increase the risk
of both an unbalanced translocation and altered amount of
genetic material in the offspring. Thus, PGD may be useful
for certain couples undergoing IVF treatment.

Y microdeletion screening is mandatory in infertile men
with azoospermia of unknown origin who opt for ART. Y
chromosome microdeletions are observed in as many as
15% of men with NOA (59,296,297). Yq microdeletion
screening may not only identify the cause of azoospermia
but also predict the probability of sperm retrieval in ART
candidates. In cases that involve AZFa and/or AZFb
microdeletions, sperm retrieval is currently not recom-
mended because there is no evidence that testicular sperm
can be found, irrespective of the retrieval method (56-59).
Conversely, sperm can be retrieved from the testes in
approximately 70% of cases that involve AZFc Yq micro-
deletions (56-59,305). In such cases, ICSI can be performed.
The probability of fatherhood by ICSI is unaltered by the
presence of AZFc microdeletions (305). However, ART-
derived male offspring will inherit the Yq microdeletion,
potentially resulting in subsequent infertility. The prob-
ability of whole Y chromosome deletion also increases in
such cases, which may lead to genital ambiguity in the
offspring (306). Female fetuses from a father with a Y
chromosome deletion have no increased risk of congenital

abnormalities or infertility. Given that males with deletion
of the AZF regions of the long arm of the Y chromosome are
infertile, the deletions are generally de novo and are therefore
absent from the father of the proband. Rarely, within a
family, the same deletion of the Y chromosome can cause
infertility in certain males but not in others; thus, certain
fertile males with a deletion in the AZF regions have
fathered sons who are infertile (57-59). In pregnancies that
are conceived via assisted reproduction and that are known
to include the risk of producing a male with a Y
chromosome deletion, specific prenatal testing or preim-
plantation testing may be performed to determine the sex of
the fetus and/or the presence of the Y chromosome deletion
(292).
Mutations in the cystic fibrosis gene are the most common

genetic mutations that result in azoospermia. Congenital
bilateral absence of the vas deferens (CBAVD) is a
syndromic disorder that is characterized by the absence of
the vas deferens and accounts for at least 6% of cases of
obstructive azoospermia and approximately 2% of infertility
cases. CFTR mutations are responsible for CBAVD in at
least 95% of men, and CFTR analysis is one of the most
important genetic tests in infertility cases (obstructive
azoospermia) (307). Patients with CAVD due to CFTR
mutations are at risk of having both male and female
offspring with cystic fibrosis and male offspring with
CAVD, given the relatively high carrier rate of CFTR
mutations (e.g., 4% in the Caucasian population) (259).
Screening for CFTR mutations may also be recommended
for men with Young syndrome and for those with unilateral
vasal agenesis before attempting to conceive (40). Ideally,
both partners should be screened prior to assisted repro-
ductive techniques (ART) to determine the risk of transmit-
ting CFTR mutations to the offspring (41). Up-to-date
information on CFTR mutations can be found at http://
www. genet.sickkids.on.ca/cftr/app, which is a CFTR
mutation database. Different techniques, such as Western-
blotting, in situ hybridization, fluorescence in situ hybridiza-
tion, single-strand conformation polymorphism analysis,
heteroduplex analysis, PCR, and real time PCR followed by
direct sequencing, have been developed to screen for CFTR
mutations. PGD has been regarded as a useful tool to
identify the presence of CFTR mutations in in vitro-derived
embryos, assuming that both the male and female partners
have been screened for genetic mutations.
In azoospermia, genetic testing using karyotyping, Yq

chromosome microdeletion analysis and CFTR mutation
screening reveals a genetic etiology in approximately 30% of
cases. A summary of the current recommendations for
genetic testing in azoospermia is presented in Table 3.
Incorporating novel techniques, such as genomics, proteo-

mics, andmetabolomics, into infertility researchmay assist in
the creation of a complete portrait of the genes that are
involved in infertility and would allow for improvements in
ART and the development of more targeted solutions (297).
Microarrays are emerging as valuable tools for the determi-
nation of the gene expression profiles of infertile phenotypes
(308). Microarray technology is also useful in the examination
of spermatogenesis. An analysis of gene expression over time
may be performed to identify the genes that are involved in
each spermatogenic stage. Genomic analyses can also be used
to determine differentially transcribed genes (309). An
enhanced understanding of transcriptional regulation
could aid geneticists in the discovery of the mechanisms
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by which different expression patterns impact a patient’s
fertility status. However, because the results of gene
expression microarray studies are variable, it would be
necessary to determine global gene expression patterns of
RNA samples from the testis before this type of analysis
become clinically relevant. Grouping the expressed genes
into functional categories may allow the characterization
of a gene expression signature for normal human
spermatogenesis, which could be used as a diagnostic
marker. Proteins are identified using two-dimensional
electrophoresis and mass spectrometry techniques, and
the results are used to create proteome maps in relation to
sperm and seminal plasma (310,311). The identification of
protein biomarkers for male factor infertility will allow for
unbiased comparisons of fertile and infertile males and
will clarify the pathophysiology of the disease. An
advantageous characteristic of genomic and proteomic
technology is that the results provide a definitive
characterization of infertile phenotypes. The use of
technologies such as genomics and proteomics is a step
toward creating personalized medical diagnoses by
determining the individual causes of infertility (309).
Finally, metabolomics involves the measurement of
metabolite expression. Metabolites are small biomarkers
that indicate the functionality of a cell and characterize
certain diseases or physiological states. The determination
of the human metabolome will reveal the functional
phenotype of the system being examined, whether it is
a single cell or an entire organism. Mass spectroscopy,
nuclear magnetic resonance spectroscopy, and other
chromatography methods can be used to create metabolite
profiles. Pathway or cluster analyses are used to identify
subsets of metabolites that can facilitate more accurate
diagnosis (309-311). By identifying differences in the
metabolome of infertile phenotypes, novel noninvasive
methods for the diagnosis and treatment of male factor
infertility can be developed.

& KEY POINTS

N Approximately 2,000 genes have been implicated in
male fertility. There is a genetic basis for both the
hypothalamic pituitary gonadal axis control of sperm
production and the molecular events that characterize
this process. Moreover, genes control the formation of

the ductal system and orchestrate sperm function during
fertilization.

N Currently, genetic abnormalities explain approximately
1/3 of azoospermia cases. Although 12-41% of azoos-
permic cases are idiopathic, it is likely that these cases
have unknown genetic causes.

N Azoospermia of genetic origin primarily encompasses
men with any of a wide variety of genetic disorders,
including chromosomal abnormalities, monogenic dis-
orders, multifactorial genetic diseases, and epigenetic
disorders.

N Sex and numerical chromosomal abnormalities
(Klinefelter syndrome and Robertsonian translocations),
gene deletions (Yq chromosome microdeletions) and
mutations (CF mutations) are the most common
abnormalities in the context of azoospermia.

N Three groups of genetic tests are used to detect genetic
diseases in azoospermic men: cytogenetic tests (karyo-
typing) to detect chromosomal aneuploidy and struc-
tural alterations, PCR to detect Y chromosome
microdeletions, and specific gene sequencing analyses
(mutational analysis of a specific gene).

N A high frequency of CFTR mutations is detected in men
with obstructive azoospermia who present with con-
genital bilateral or unilateral absence of the vas deferens
and bilateral epididymal obstruction.

N Non-obstructive azoospermia is primarily due to pre-
testicular and testicular defects; each of these conditions
has a multitude of genetic causes.

N Depending on whether the azoospermia is obstructive
(OA) or non-obstructive (NOA), one can determine
which genes require analysis. CFTR gene analysis is
recommended in OA, whereas karyotyping and Yq
microdeletion analyses are recommended in NOA.

N Yq microdeletion screening may not only identify the
cause of azoospermia but also predict the probability of
sperm retrieval in ART candidates. ART-derived male
offspring will inherit the Yq microdeletion, potentially
resulting in subsequent infertility.

N Genetic testing in infertile males allows couples to make
educated decisions regarding whether to use a sperm
donor or to opt for advanced ART and a preimplantation
genetic diagnosis if an abnormal result is revealed.

Table 3 - The current recommendations for genetic testing in azoospermia based on clinical phenotypes

Genetic test Phenotype Recommendation

Cytogenetic analysis Non-obstructive azoospermia Mandatory

Yq microdeletion analysis Non-obstructive azoospermia Mandatory

Cystic fibrosis transmembrane conductance

regulator (CFTR) mutation analysis

Obstructive azoospermia and congenital absence of the vas

deferens (CAVD) or congenital bilateral epididymal

obstruction and normal vasa

Highly Recommended

KAL1 mutation analysis Kallmann syndrome (KS) Recommended

CAG repeat/AR mutation analysis Androgen insensitivity syndrome (AIS) Recommended

Steroid 5-alpha-reductase 2 (SRD5A2) mutation

analysis
SRD5A2 deficiency Recommended

Lutenizing hormone (LH ) receptor mutation

analysis

Pseudohermaphroditism , azoospermia, micropenis,

delayed puberty and arrest of spermatogenesis

Suggested

Gonadotropin-releasing hormone (GnRH)

mutation analysis Low serum LH and FSH levels Suggested

DAZL/MTHFR mutation analysis Non-obstructive azoospermia Suggested
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N The inability to identify a specific genetic etiology in
idiopathic azoospermia carries an increased risk of the
transmission of the same trait to the offspring.

N Incorporating novel techniques, such as genomics,
proteomics, and metabolomics, into infertility research
could assist in the creation of a complete portrait of the
genes that are involved in infertility and would allow for
improvements in ART and the development of more
targeted solutions.
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